

This lens is unique because apochromatic correction and an aspherical surface are combined for the first time. Two of the five lens elements are made of high-refraction optical glass, and two others make judicious use of anomalous partial dispersion. Brilliance and resolving power are already outstanding at full aperture. Artificial vignetting is extremely low. These features lead to superlative results - in every application: such as portraiture, reportage or studio photography. In addition, its compact design and high speed make it ideal for hand-held photography.

___ Engineering drawing

Technical Data
Angle of view (diagonal, horizontal, vertical) $27^{\circ}, 23^{\circ}, 15^{\circ}$
Optical design Number of elements / groups: 5 / 5
Focal length: 90.9 mm
Entrance pupil: 58.6 mm (related to the first lens surface in light direction)
Focusing range: 1 m to Infinity
Distance setting Scale: combined meter/feet-increments
Smallest object field: $220 \mathrm{~mm} \times 330 \mathrm{~mm}$
Highest reproduction ratio: 1:9
Diaphragm Setting / Type: with clickstops (including half values), manual diaphragm
Smallest aperture: f/ 16
$\begin{array}{ll}\text { Bayonet } & \text { Leica M quick-change bayonet } \\ \text { Filter (type) } & \text { internal thread for screw-in type filters E } 55\end{array}$
Lens hood built-in, telescopic
Dimensions and weight Length: 78 mm
Largest diameter: 64 mm
Weight: approx. 500 g

MTF graphs

Aperture Stop 2.0

The MTF is indicated both at full aperture and at $\mathrm{f} / 5.6$ at long taking distances (infinity). Shown is the contrast in percentage for $5,10,20$ and $40 \mathrm{lp} / \mathrm{mm}$ accross the height of the 35 mm film format, for tangential (dotted line) and sagittal (solid line) structures, in white light. The 5 and $10 \mathrm{lp} / \mathrm{mm}$ will give an indication regarding the contrast ratio for large object structures. The 20 and $40 \mathrm{lp} / \mathrm{mm}$ records the resolution of finer and finest object structures.

	sagittal structures
--------	tangential structures

' [mm]

Effective Distortion
$Y^{\prime} \quad[\mathrm{mm}]$

Distortion is the deviation of the real image height (in the picture) from the ideal image height. The relative distortion is the percentage deviation. The ideal image height results from the object height and the magnification. The image height of 21.6 mm is the radial distance between the edge and the middle of the image field for the format $24 \mathrm{~mm} x$ 36 mm . The graph of the effective distortion illustrates the appearance of straight horizontal and vertical lines in the picture.

Vignetting is a continous decrease of the illumination to the edges of the image field. The graph shows the percentage lost of illumination over the image height. 100% means no vignetting.

[^0]-------- tangential structures

		Aperture Stop							Magnification
		2	2,8	4	5,6	8	11	16	
	1	0,993-1,007	0,990-1,010	0,986-1,014	0,980-1,020	0,972-1,029	0,962-1,041	0,946-1,061	1/9,18
	1,2	1,190-1,211	1,186-1,215	1,179-1,221	1,171-1,230	1,159-1,244	1,145-1,261	1,122-1,291	1/11,4
E0	1,7	1,679-1,722	1,670-1,731	1,658-1,745	1,641-1,763	1,617-1,792	1,588-1,829	1,543-1,894	1/16,9
衰	2	1,970-2,031	1,958-2,043	1,941-2,063	1,918-2,089	1,886-2,130	1,846-2,183	1,784-2,278	1/20,2
$\stackrel{\text { ® }}{ }$	3	2,932-3,071	2,906-3,101	2,867-3,146	2,817-3,209	2,746-3,307	2,661-3,440	2,531-3,687	1/31,3
\%	4	3,879-4,129	3,833-4,183	3,765-4,266	3,679-4,383	3,557-4,571	3,415-4,831	3,203-5,336	1/42,3
-	7	6,635-7,408	6,499-7,586	6,305-7,869	6,064-8,280	5,736-8,986	5,373-10,06	4,861-12,56	1/75,3
	∞	125,3-m	89,51-m	62,65-m	44,77-m	31,35-m	22,81-m	15,70-m	$1 / \infty$

Aperture Stop 4

Aperture Stop 5,6

Aperture Stop 8

[^0]: sagittal structures

